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Abstract We have constructed a set of non-Hermitian operators that satisfy the com-
mutation relations of the SO(3)-Lie algebra. Using these set of operators we have
constructed a non-Hermitian Hamiltonian corresponding to the Hydrogen atom that
includes a complex term but with the same spectra as in the Hermitian case. It is also
found a non-Hermitian Runge–Lenz vector that represents a conserved quantity. In
this way, we obtain a set of non-Hermitian operators that satisfy the commutation
relations of the SO(4)-Lie algebra.
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1 Introduction

Quantum mechanics is considered as one the most solid and well established theories
in physics. Different experiments have corroborated its predictions. However, at a
theoretical level there are different facts that make us think that it could be necessary to
modify or extend this theory. For example, it has not been possible to find a consistent
quantum-mechanical formulation of general relativity, then quantum theory maybe
modified in order to make it compatible with general relativity.

As it is well known, quantum mechanics has been formulated in terms of Hermitian
operators in order to obtain real spectra. However, it has become clear that Hermiticity
is not a necessary condition to obtain real spectra. This opens the possibility for
quantum mechanics to be extended using non-Hermitian operators, this is the so called
PT -symmetry theory, see review [1] and its references.
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The PT -version of quantum mechanics has strongly attracted attention because
it gives a way to deal with some problems that are out of the scope of conventional
quantum mechanics. For example, we can solve certain kind of problems in which the
potentials are given by complex-valued functions and whose spectra results to be real
[2]. In the same way, using this formulation it has been possible to achieve a consistent
quantization of a system with high order derivatives: the so called the Pais-Uhlenbeck
oscillator model [3]. This opens the possibility to construct in a consistent way high
order derivatives field theories. This fact is important because different theories with
high order derivatives have been recently proposed, for example, in extensions of the
standard model [4], in the noncommutative spaces [5] and gravity theories [6]. In this
way, it becomes possible that an extension of PT -symmetry theory applied to field
theory can give a consistent description of these systems.

There is not a finished version of the theory, however, a growing number of themes
are under study in the PT -framework, some of them can be found [7–11]. An aspect
that has been scarcely treated in the PT -context is the study of symmetries and con-
served quantities. In this work, we will study some aspects of this topic. We will
obtain a non-Hermitian set of operators that satisfy the commutation relations of the
Lie SO(3) rotation group. It will be shown that these operators generate rotations in
the configuration space xi , and not in the momentum space �p = −i∇ but in a modified
non-Hermitian momentum space �p f = �p+i �∇ f , originally considered by Dirac in his
seminal book [12]. Also, we will show that the Casimir of the algebra has real spectra
and that its eigenfunctions, under the PT -inner product, form a complete basis. This
eigenfunctions will be called PT -spherical harmonics.

Additionally we will study a central potential Hamiltonian with an additional com-
plex term. It will be shown that the conventional angular momentum is not a conserved
quantity anymore and we will have a modified non-Hermitian angular momentum oper-
ator. As a particular case, we obtain the solutions of the corresponding PT -Hydrogen
atom that includes a complex term, and it will be found that a non-Hermitian Runge–
Lenz vector is a conserved quantity. Then we will have the non-Hermitian generators
of the SO(4)-Lie algebra.

This work is organized as follows: Sect. 2 make a brief review of PT -theory and
of conventional spherical harmonics, in Sect. 3 we study the PT -rotations, in Sect. 4
we study the completeness relation, Sect. 5 is devoted to the study of symmetry trans-
formations, in Sect. 6 we deal with the central potential problem, in Sect. 7 we will
study the Hydrogen atom and at last we conclude with a summary of our results.

2 PT -symmetry and spherical harmonics

In this section, a review of some well known facts of PT -symmetry theory and spher-
ical harmonics is made before consider the PT -transformed version of this functions

2.1 PT -inner product

PT -theory considers the transformations under the parity operator P and the time
reversal operator T . Under the P-operator we have the transformation
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(x, y, z) → (−x,−y,−z) (1)

and under T

i → −i (2)

In this way, any function f (�x) can be transform as

PT ( f (�x)) = f ∗(−�x). (3)

Note that, in spherical coordinates P produces the transformation

(r, θ, ϕ) → (r, π − θ, ϕ + π), (4)

under the operator P a f function transforms as

P ( f (r, θ, ϕ)) = f (r, π − θ, ϕ + π), (5)

therefore

PT ( f (r, θ, ϕ)) = f ∗(r, π − θ, ϕ + π). (6)

Now, the PT -inner product induced by the operators P and T

〈 f |g〉 =
∫

d �x[PT f (x)]g(x). (7)

This expressions will be used in sections bellow. An exhaustive study of the PT -theory
can be found in [1].

2.2 Spherical harmonics

The angular momentum components are given by the Hermitian operators [13]

Lx = −i

(
y
∂

∂z
− z

∂

∂y

)
, L y = −i

(
z
∂

∂x
− x

∂

∂z

)
, Lz = −i

(
x
∂

∂y
− y

∂

∂x

)
.

Its algebra is given by

[
Lx , L y

] = i Lz,
[
Lz, Lx

] = i L y,
[
L y, Lz

] = i Lx . (8)

Considering L2 = L2
x + L2

y + L2
z and Eq. (8), we have

[
L2, Lx

]
=

[
L2, L y

]
=

[
L2, Lz

]
= 0. (9)
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An important equation in mathematical-physics is the eigenvalue equation L2Ylm =
l(l + 1)Ylm, l = 0, 1, 2 . . ., that in spherical coordinates is written

L2Ylm(θ, ϕ) = −
[

1

sin θ

∂

∂θ

(
sin θ

∂Ylm(θ, ϕ)

∂θ

)
+ 1

sin θ2

∂2Ylm(θ, ϕ)

∂ϕ2

]

= l(l + 1)Ylm(θ, ϕ). (10)

If ϕ ∈ (0, 2π) and θ ∈ (0, π), the solutions of this equation are given by the spherical
harmonics [14]

Ylm(θ, ϕ) =
√
(2l + 1)(l − m)!

4π(l + m)! eimϕPm
l (cos θ), −l ≤ m ≤ l, (11)

with l = 0, 1, 2, 3

Pm
l (u) = (−1)m(1 − u2)

m
2

dm

dum
Pl(u), Pl(u) = 1

2l l!
dl

dul

(
u2 − 1

)l
(12)

where Pm
l (u) denoted the associated Legendre polynomials and Pl(u) the Legendre

polynomials respectively. The spherical harmonics satisfy the orthonormality relation

〈Yl ′m′(θ, ϕ)|Ylm(θ, ϕ)〉 =
∫

d�Y ∗
l ′m′(θ, ϕ)Ylm(θ, ϕ) = δmm′δl ′l . (13)

where δkl is the Kronecker delta function.
Given that the spherical harmonics constitute an orthonormal basis, we can write

any function F(θ, ϕ) as a linear combination of them, that is

F(θ, ϕ) =
∑
l≥0

l∑
m=−l

ClmYlm(θ, ϕ). (14)

Using Eq. (13), we find

Clm =
∫

d�Y ∗
lm(θ, ϕ)F(θ, ϕ). (15)

Substituting Clm in Eq. (14) and making the change of variables u′ = cos θ ′, u = cos θ
we obtain

F(θ, ϕ) =
2π∫

0

dϕ

1∫

−1

du′F(u′, ϕ′)

⎛
⎝∑

l≥0

l∑
m=−l

Y ∗
lm(u

′, ϕ′)Ylm(u, ϕ)

⎞
⎠ .

Therefore, the expression inside the parenthesis must be equal to δ(ϕ − ϕ′)δ(u − u′),
that is
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∑
l≥0

l∑
m=−l

Y ∗
lm(θ

′, φ′)Ylm(θ, φ) = δ(φ − φ′)δ(cos θ − cos θ ′), (16)

this expression is called completeness relation.
Under the parity operator the spherical harmonics transform as

P (Ylm(θ, ϕ)) = Ylm(π − θ, ϕ + π) = (−1)lYlm(θ, ϕ), (17)

and under the PT -operator, we have

PT (Ylm(θ, ϕ)) = Y ∗
lm(π − θ, ϕ + π) = (−1)lY ∗

lm(θ, ϕ). (18)

This results will be used below.

3 PT -symmetry and rotations

Given any f = f (r, θ, ϕ), we can define the operators

L f i = e f Li e
− f . (19)

In general L f i is a non-Hermitian operator, however

[
L f x , L f y

] = i L f z,
[
L f z, L f x

] = i L f y,
[
L f y, L f z

] = i L f x , (20)

that we can identify as the SO(3)-Lie algebra commutation relations. Considering
L2

f = L2
f x + L2

f y + L2
f z and Eq. (20), we have

[
L2

f , L f i

]
= 0, (21)

therefore, we have the same algebra as the one satisfied by Li . Besides

L2
f Y f lm(θ, ϕ) = l(l + 1)Y f lm(θ, ϕ), Y f lm(θ, ϕ) = e f Ylm(θ, ϕ), (22)

that will be called PT -spherical harmonics. In this case, the PT -inner product is given
by

〈Y f l ′m′(θ, ϕ)|Y f lm(θ, ϕ)〉 f =
∫

d�PT
(
Y f l ′m′(θ, ϕ)

)
Y f lm(θ, ϕ). (23)

Under a PT -transformation, we have

PT (Y f lm) = e f ∗(r,π−θ,ϕ+π)(−1)lY ∗
lm(θ, ϕ). (24)
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therefore we can write

〈Y f l ′m′(θ, ϕ)|Y f lm(θ, ϕ)〉 f = (−1)l
∫

d�e f ∗(r,π−θ,ϕ+π)+ f (r,θ,ϕ)Y ∗
l ′m′(θ, ϕ)Ylm(θ, ϕ).

It becomes clear that, under this inner product not any function f allows the set Y f lm

to be an orthogonal set. However, if the following condition is fulfilled

e f ∗(r,π−θ,ϕ+π)+ f (r,θ,ϕ) = λ, λ = const (25)

then we have

< Y f l ′m′(θ, ϕ)|Y f lm(θ, ϕ) > f = (−1)lλδl ′lδm′m . (26)

In this way, the spherical harmonics Y f lm(θ, ϕ) are orthogonal under the PT -inner
product only if Eq. (25) is satisfy. It is worthy to mention that due to the parity of the
wave functions, in some PT -symmetry systems the following orthogonality relations

〈φm |φn〉 = (−1)nδm,n, (27)

may be obtained [1].

4 Completeness relation

Using the PT -spherical harmonics Y f lm(θ, ϕ), we can have the expansion

F(θ, ϕ) =
∑
l≥0

l∑
m=−l

almY f lm(θ, ϕ). (28)

Appeling to the orthonormality relations Eq. (26), we find

alm = (−1)l

λ
〈Y f lm(θ, ϕ)|F(θ, ϕ)〉 f = (−1)l

λ

∫
d�PT

(
Y f lm(θ, ϕ)

)
F(θ, ϕ) (29)

substituting this result into Eq. (28), we obtain

F(θ, ϕ) =
∑
l≥0

l∑
m=−l

(−1)l

λ

∫
d�′PT

(
Y f lm(θ

′, ϕ′)
)

F(θ ′, ϕ′)Y f lm(θ, ϕ)

=
∫

d�′F(θ ′, ϕ′)

⎡
⎣∑

l≥0

l∑
m=−l

(−1)l

λ
PT

(
Y f lm(θ

′, ϕ′)
)

Y f lm(θ, ϕ)

⎤
⎦

=
∫

d�′F(θ ′, ϕ′)

⎡
⎣∑

l≥0

l∑
m=−l

e f ∗(r,π−θ ′,ϕ′+π)+ f (r,θ,ϕ)

λ
Y ∗

lm(θ
′, ϕ′)Ylm(θ, ϕ)

⎤
⎦ ,
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therefore

δ(φ − φ′)δ(cos θ−cos θ ′)=
∑
l≥0

l∑
m=−l

e f ∗(r,π−θ ′,ϕ′+π)+ f (r,θ,ϕ)

λ
Y ∗

lm(θ
′, ϕ′)Ylm(θ, ϕ).

(30)

This is the completeness relation for the PT -spherical harmonics. A similar complete-
ness relation is found for different systems in PT -quantum mechanics [1].

5 Symmetry transformations

Consider the operators A, B,C that satisfy the following commutation relations

[A, B] = C. (31)

Transforming the A, B,C operators, we obtain A f = e f Ae− f , B f = e f Be− f y
C f = e f Ce− f , then

[A f , B f ] = C f . (32)

We know that [Li , x j ] = iεi jk xk , where xk is the position operator. If we consider the
transformation x f i = e f xi e− f = xi , we arrive to

[L f i , x j ] = iεi jk xk, (33)

therefore the operators L f i generate infinitesimal rotations in the space xi . However,
as the momentum operator is given by pi = −i ∂

∂xi , then

[L f i , p j ] �= iεi jk pk, (34)

and we say that the operators L f i does not generate infinitesimal rotations in the space
pi . Now, if p f i is given by p f i = e f pi e− f , then we have

[L f i , p f j ] = iεi jk p f k . (35)

Note that

�p f = e f �pe− f = �p + i �∇ f. (36)

this operator was studied by Dirac in his seminal book [12] and is also obtained by
Andersen in his work about canonical transformations but without given the conditions
under which the PT symmetry is preserved. If the Hamiltonian operator is given by

H = �p 2

2m
+ V (r), (37)
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then

[Li , H ] = 0. (38)

Defining H f by

H f = e f He− f , (39)

we have that, in general

[Li , H f ] �= 0, (40)

therefore the angular momentum Li is not a conserved quantity for Hamiltonians of
the form H f . However

[L f i , H f ] = 0, (41)

then the modified angular momentum L f i is conserved. Note that the Hamiltonian
H f is given by

H f = �p 2
f

2m
+ V (r) = m

2

(
�p + i �∇ f

)2 + V (r) (42)

In the next section we will consider one important example.

6 The central problem

Consider the Hamiltonian

H = m

2
�p 2 + V (x, y, z), (43)

then

H f = e f He− f = m

2

(
�p + i �∇ f

)2 + V (x, y, z)

= m

2

(
�p 2 + 2i �∇ f · �p + (∇2 f )−

( �∇ f
)2

)
+ V (x, y, z), (44)

that is a non-Hermitian Hamiltonian. If the potential is given by

V (x, y, z) = −m

2

(
∇2 f −

( �∇ f
)2

)
+ U (x, y, z), (45)

then we can write

H f = m

2

(
�p 2 + 2i �∇ f · �p

)
+ U (x, y, z). (46)

This kind of Hamiltonians naturally arise in some statistical models [15].
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Note that if ψ is an eigenfunction in the equation

Hψ = Eψ (47)

then we can define the f -states ψ f = e fψ that satisfy

H fψ f = Eψ f . (48)

It follows that although H f is a non-Hermitian operator it does has a real spectrum.
As an example, let us consider the central potential problem V (r) whose

Schrodinger equation is given by [13]

Hψ =
(m

2
�p 2 + V (r)

)
ψ = Eψ (49)

and whose solutions

ψE (r, θ, ϕ) = φE (r)Ylm(θ, ϕ) (50)

satisfy the orthogonality relations

〈ψE ′(r, θ, ϕ)|ψE (r, θ, ϕ)〉 =
∫

drr2d�ψ∗
E ′(r, θ, ϕ)ψE (r, θ, ϕ) = δE E ′ . (51)

Then the solutions of the equation

H fψ f =
[

m

2

(
�p 2 + 2i �∇ f · �p + ∇2 f −

( �∇ f
)2

)
+ V (r)

]
ψ f

= Eψ f (52)

are given by

ψE f (r, θ, ϕ) = e f (r,θ,ϕ)φE (r)Ylm(θ, ϕ). (53)

The PT -inner product for the ψ f -states is given by

〈ψE ′ f (r, θ, ϕ)|ψE f (r, θ, ϕ)〉 f =
∫

drd�PT
(
ψE ′ f (r, θ, ϕ)

)
ψE f (r, θ, ϕ)

=
∫

drd�(−1)l e f ∗(r,π−θ,ϕ+π)+ f (r,θ,ϕ)φ∗
E ′(r)φE (r)Y

∗
l ′m′(θ, ϕ)Ylm(θ, ϕ).

Besides, if f (r, θ, ϕ) satisfies Eq. (25) and considering Eq. (51), we have

〈ψE ′ f (r, θ, ϕ)|ψE f (r, θ, ϕ)〉 f = (−1)lλ
∫

drd�φ∗
E ′(r)φE (r)Y

∗
l ′m′(θ, ϕ)Ylm(θ, ϕ)

= λ(−1)lδE E ′ . (54)
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Given that [Li , H f ] �= 0, it follows that Li is not a conserved quantity. However, as

[L f i , H f ] = 0, (55)

then L f i is conserved.

7 The Hydrogen atom

In the case of the Hydrogen atom, we have the potential

V (r) = − Ze2

r
, (56)

where the solutions are given by

ψNlm(ρ, θ, ϕ) = 2

N 2

√
Z3

a3
R B

(N − l − 1)!
(N + l)! ρl L2l+1

N−(l+1)(ρ)e
− ρ

2 Ylm(θ, ϕ),

EN = − Ze2

aR B N 2 , N = n + l + 1, n = 0, 1, 2 · · · ,

where aR B is the Bohr radius and

ρ = αr, α = 2

√
−2m E

h̄2 . (57)

Taking into account Eq. (52), we have the equation

H fψ f =
[

m

2

(
�p 2 + 2i �∇ f · �p + ∇2 f −

( �∇ f
)2

)
− Ze2

r

]
ψ f = Eψ f (58)

whose solutions are given by

ψ f Nlm(ρ, θ, ϕ) = e f (r,θ,ϕ)ψNlm(ρ, θ, ϕ) (59)

this are orthogonal functions if equation (25) is satisfied. A remarkable fact is that L f i

is a conserved quantity. In the conventional Hydrogen atom, the Runge–Lenz vector
is also conserved [13]

Ri = 1

2

(
�L × �p − �p × �L + Ze2�r

r

)
i
. (60)

In the case of the Hamiltonian H f , we have

[R f i , H f ] = 0, (61)

and we can say that the transformed non-Hermitian Runge–Lenz vector is conserved.
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Note that in this case, we have obtained a set of conserved quantities L f i , L2
f , R f i ,

that are the non-Hermitian generators of the SO(4) algebra.

8 Conclusions

In this work we have constructed a set of non-Hermitian operators L f i that satisfy the
commutation relations of the SO(3)-Lie algebra. We have shown that this operators
generate rotations in the configuration space and not in the conventional momentum
space but in a modified non-Hermitian momentum space �p f = �p+i �∇ f . It is worthy to
mention that this operator was originally considered by Dirac in his seminal book and
corresponds to a canonical transformation studied in [16]. Besides, the Li f generators
are related with a new type of spherical harmonics that result to be PT -orthonormal.
Additionally, we have shown that this quantities are conserved for mechanical systems
described by a central potential Hamiltonian with an additional complex term. As a
particular case, we have obtained the solutions of the corresponding PT -Hydrogen
atom that includes a complex term, and we have found that a non-Hermitian Runge–
Lenz vector is a conserved quantity. Considering this case, one remarkable result is
that, as we have obtained the non-Hermitian generators of the SO(3)-Lie algebra and
also a non-Hermitian Runge–Lenz vector, then we have the non-Hermitian generators
of the SO(4)-Lie algebra.
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